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Summary 
Global climate risks that manifest as 

droughts and floods are an ever present 
concern. The associated regional variability 
in water supply poses risks to large 
multinational companies, especially those 
who rely heavily on agricultural 
commodities. The agricultural supply chains 
of such corporations are often managed 
through contract farming. Corporations are 
usually better placed than farmers to buffer 
financial risks and facilitate innovation on 
managing climate induced production risk 
through prognostic approaches and 
insurance. Examples of proactive corporate 
approaches include an analysis of what 
should be planted; where, when and how, 
considering productivity, market conditions, 
labor and water constraints/risks at local to 
regional levels. A scientific analysis 
facilitates the success of such risk 
hedging mechanisms in value chains.     

PepsiCo is at the forefront of water risk 
identification and strategic management of 
its internal operations and the supply chain 
based on the prognostic information. In 
collaboration with PepsiCo, the Columbia 
Water Center developed a prototype 
corporate water risk and sustainability 
framework for quantifying and analyzing 
climate induced water risks. The climate risk 
tool is based on (a) developing specific 
indicators for assessment of climate 
induced water risk as aggregated seasonal 
water deficits; (b) investigating the sources 
of predictability for these indicators; and (c) 
developing statistically verifiable models for 
issuing season ahead probabilistic forecasts 
for potential water deficits that imply 
regional production shortfalls. Although 
work to date has focused on water-related 
impacts, weather extremes will be included 
in forthcoming work. Temperature extremes 
are of particular interest. 

The above developments are part of a 
joint effort to build a global capacity to 
forecast near-term climate patterns and 
water availability across PepsiCo’s 
agricultural sourcing areas, to positively 
impact PepsiCo’s revenue and goals of 
sustainable agriculture, contributions to 

global food security, and the livelihood of 
their core production partners, the farmers.  

 

Contract Farming and PepsiCo 
PepsiCo pioneered contract farming in 

India in 1989. Currently, the company 
engages directly with farmers across the 
country to grow and supply a variety of 
crops to support their beverage, snack food 
and exports business. Specifically, the 
potato contract farming structure is 
sustained through a program that provides 
the farmers with the best quality potato 
seeds, agronomy advice, training, help with 
capital investments like drip irrigation and 
mitigation of market price risk through 
contracts, in order to supply the Frito Lay 
foods division’s three state of the art 
manufacturing plants in Punjab, West 
Bengal and Maharashtra. These improved 
practices allow the farmers to dramatically 
improve productivity and their income. 
Through contracts and other relationships, 
more than 11,000 farmers across the states 
of Punjab, Uttar Pradesh, Karnataka, Bihar, 
West Bengal, Gujarat and Maharashtra 
supply PepsiCo with world-class chip grade 
potatoes (source: PepsiCo, India 
http://pepsicoindia.co.in).  

This setting provided an interesting 
opportunity to explore whether there was 
the possibility to provide advance 
predictions of significant rainfall deficits or 
other extreme weather events that could 
adversely impact either potato production or 
underground water reserves and lead to 
higher energy costs for pumping 
groundwater for irrigation to maintain yield. 
Since the farmers are under contract to 
supply potatoes at a price point that has a 
limited spread, it is unclear whether a 
farmer faced with a significant water 
shortage would invest in expensive 
groundwater pumping to sustain production. 
On the other hand, if such a situation could 
be anticipated, the contracting corporation 
could take measures to insure such risks for 
the contracted farmers, diversify their supply 
chain to reduce their risk, or take other 
precautionary steps, such as helping with 
the installation or operation of additional 

http://pepsicoindia.co.in/
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irrigation capacity or other field-based 
solutions. 

During 2010-2012, the methodology for 
assessing potential water risks at the district 
level or higher resolution in India, 
considering all water demands and supply 
within that region was developed. A pilot 
experiment was initiated in one district 
using one crop, in the state of 
Maharashtra, to see if an advance 
forecast during the 2012 monsoon 
season could be developed. This white 
paper summarizes the results of this 
pilot experiment.  

 
The 2012 PepsiCo-CWC Pilot 

The Satara district in Maharashtra is 
one of the primary regions for sourcing 
potatoes during Kharif, the peak rainfall 
season (June - September), in India. Satara 
supplies the  majority of the potatoes 
processed by the Frito Lay’s manufacturing 
plant in Pune, Maharashtra. The average 
annual rainfall in this arid to semi-arid region 
is around 350mm with high inter-annual 
variability. The region has experienced four 
droughts (seasonal rainfall below long term 
average) since 2001. The ability to predict 
such droughts, with a reasonable probability 
at lead times of a season to six months, 
could suggest ways to adapt existing 
operations to the anticipated conditions and 
minimize the impacts of droughts on the 
companies supply chain. 
 
Climate Induced Water Stress Indicator  

A modified version of the water stress 
index introduced by Devineni et al. (2013) 
was developed for Satara. The index is 
derived by accumulating differences in 
supply (rainfall) and demand (crop water 
requirement measured through regional 
reference crop evapo-transpiration) over 
time to assess the maximum cumulative 
deficit that is likely to occur. This cumulative 
deficit index is a primary determinant of the 
water stress faced by the crop and hence of 
the dependence of the crop yield on water 
availability.  

The Seasonal Crop Stress Indicator 
(SCSI) developed here computes the 
maximum cumulative deficit over a season 
between the daily water requirement for 
optimal crop growth and the daily rainfall. 
The Index improves on metrics derived 
using monthly or seasonal rainfall and crop 
demand because it focuses on the rainfall 
distribution within the season relative to the 
crop water demand. Therefore, the SCSI 
accounts for the timing of planting, different 
stages of crop growth, and the timing and 
distribution of rainfall in the season. Thus, it 
is able to discriminate between two 
monsoon seasons which have the same 
total rainfall, but differ in that one may have 
rainfall distributed uniformly over the season 
through modest rainfall events, while the 
other may have a few intense rain events 
separated by long dry periods. The latter 
gives rise to a much higher SCSI. The 
computation of SCSI is illustrated in Figure 
1. 

Figure 1: Illustration of SCSI computation. Daily 
rainfall (blue bars), crop water requirement (red 
line) and the cumulative deficit (green line) over 
the season. 

 
The annual time series of the SCSI 

computed for the Kharif season in Satara 
(based on a 112 year daily rainfall data 
Rajeevan et al. (2006) is presented in 
Figure 2. We have standardized the SCSI 
values as the percentage difference each 
year from the 112-year average of SCSI. 
The long term average SCSI for growing 
potatoes in Satara is 250 mm. This is 

Seasonal Crop Stress Indicator

Captures the effects 

of breaks in the 

monsoon season
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equivalent to approximately 271,500 gallons 
of water used for irrigating a one-acre farm 
of potatoes on average throughout the 
season. The percent differences in Figure 2 
refer to percentages of this number, i.e. a 
10% increase in SCSI indicates an 
additional requirement of 27,150 gallons.  

 

Figure 2: 112 year time variations of SCSI 
expressed as percent anomaly from long-term 
average SCSI.  

 
From Figure 2 it is clear that (a) Satara 

experiences recurrent droughts with 
intermediate wet periods and (b) there is 
year-to-year persistence in the incidence of 
these droughts. Such variations and 
epochal changes are typically modulated 
through large scale global climate patterns. 
Investigating the relations between 
monsoon rainfall/deficit and the large scale 
climate tele-connections could enable the 
development of models that can be used to 
understand and hence predict the variability 
in the SCSI in the region.   

 
The Climate Precursors 

India has an extensive history of 
developing long range predictions of 
monsoon rainfall that are based on 
identifying various regional to large scale 
climate predictors diagnosed  from historical 
data collected over the years (Walker 1924; 
Thapliyal 1987). A variety of seasonal 
forecasts of the All India monsoon are 
documented and available for reference 
(Gadgil et al. 2007; Kumar et al. 1995). It is 
well established that inter-annual climate 
modes such as the El Nino-Southern 
Oscillation (ENSO) associated with 
anomalous Sea Surface Temperature (SST) 
conditions in the tropical Pacific Ocean 
influence the inter-annual variability of 

monsoonal rainfall (Parthasarathy and Pant 
1985; Shukla and Paolino 1983).   

 
The El Nino (La Nina) phase of ENSO is 

associated with an increased probability of 
experiencing drought (good rainfall) over the 
Indian sub-continent (Sikka 1980; 
Parthasarathy and Panth, 1984; 
Rasmusson and Carpenter, 1983). Various 
indices of the ENSO phenomena have been 
developed. Some of these based on 
averages of regional SST are known as the 
Nino12, Nino3, Nino4 and Nino34 indices 
(Figure 3). Several other regional to global 
predictors of Indian monsoon have been 
documented by Kumar et al. (1995). Other 
climate phenomena that are related to the 
Indian monsoon have also been discussed 
by them.  

Figure 3: Regions in the tropical Pacific over 
which various ENSO indices are developed. 

 
One goal of our work was to develop a 
simple statistical model for predicting 
SCSI for growing potatoes in Satara, as 
opposed to developing a statistical 
model for the rainfall in Satara or the All 
India monsoon. The generalized climate 
forecast models available are not specific 
enough for this task. Consequently, the first 
objective was to identify appropriate climate 
predictors within a season or more before 
the monsoon starts in June. After initial 
statistical investigations and a review of the 
key literature associated with Indian 
monsoon prediction, the following predictors 
were identified: 
1. The average of the NINO3 index from 

the previous winter (December to 
February) 

2. The change in the NINO12 index from 
December to March, as a directional 



Columbia Water Center  water.columbia.edu 

Earth Institute I Columbia University 

5 
 
 Towards Hedging Climate Risk in Corporate Value Chains 

Exogenous Predictors

 Nino  (sea surface temperature anomalies in tropical pacific ocean - ENSO)

 DJF 

 MAM

 MAM – DJF (tendency)

 JJAS

 Tropical SSTa -- Shown to influence the interannual variability of rainfall

MAM JJAS

indicator. (as suggested in 
Parthasarathy et al. 1988) 

3. Concurrent season (June-Sept.) SSTs 
over the eastern Indian Ocean (see 
Figure 4). This corresponds to 
enhanced (suppressed) atmospheric 
convection during the anomalous 
warming (cooling) of the Indian Ocean 
waters, which serves as a continuous 
source of moisture as the monsoon 
season develops.  

 

Figure 4: Spearman’s Rank Correlation 
between SCSI in Satara and SST during the 
same season. SST region in the Indian Ocean 
(red box) that influences the SCSI has a 
statistically significant correlation at the 95% 
level.  

 
Statistical Forecast Model  

Season ahead SCSI forecasts based on 
the k-nearest neighbors (k-nn) semi-
parametric resampling approach were 
developed. This is a data driven approach 
due to Souza and Lall (2003) that develops 
a conditional probability distribution of SCSI 
given the predictors by first identifying the k 
historical climate conditions that are most 
similar to the current values of the climate 
predictors and then randomly drawing the 
SCSI values in the historical data that 
correspond to these k neighbors. The 
neighbors are weighted so that the closer or 
more similar neighbors are chosen more 
often than those further away. For the 
applications to Satara, 50 neighbors were 
considered and 1000 samples were drawn 
from them at each time to develop a 
forecast.  A regression based approach is 

used first to weight the predictors based on 
their “importance” in explaining the future 
SCSI.  

The forecast procedure is tested using 
the leave-one-out cross validation method. 
Each historical observation is omitted in 
turn, and the model is developed using the 
remaining 111 years of data. A prediction of 
the observation that was not kept in the 
model building set is then made and 
compared with the actual outcome for that 
year. For the 112-year data set this leads to 
111 prediction comparisons.  

Results from a variant of this approach 
are presented in Figure 5. The cross-
validated forecasts for the most recent 
years, 1998 – 2012 are illustrated in Figure 
5. Here, the SCSI for the 1998 Kharif 
season is predicted using the model 
developed based on data from 1901 – 1997. 
Similarly, the deficit for 1999 is predicted 
based on the model that is developed using 
the data from 1901 – 1998. Thus, we 
always use only the historical data and 
update the model each year with the 
information of the previous year, much as a 
normal user of the forecast system would 
have to do. Hence, as we move from year to 
year, we update the model observations 
and predict the future state. It is important to 
note that while the Nino3 and Nino12 
predictors are from the previous season, the 
predictors from the Eastern Indian Ocean 
are based on concurrent season (JJAS 
SSTa). Hence in the forecasting scheme, 
we used the JJAS forecasted SST state 
issued in May from ECHAM4.5 operational 
forecasting center (available from IRI data 
library 
(http://iridl.ldeo.columbia.edu/SOURCES/.IR
I/.FD/.ECHAM4p5/.Forecast/.ca_sst/); Li 
and Goddard, 2005; van den Dool 2007). 
Skillful forecasts for the tropical SSTs based 
on coupled ocean – atmospheric general 
circulation models have been in operation 
from various climate centers since 1998. 
Hence, in our forecasting scheme for 
Satara, we develop and demonstrate the 
forecasts of SCSI from 1998 – present.     

The box and whiskers shown in Figure 5 
for each year illustrate the range of possible 
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values of SCSI for that year. The box shows 
the range of forecast values that are likely to 
occur at least 25% of the time and at most 
75% of the time. The solid line in the middle 
of the box gives the median, i.e. the value 
for which 50% of the forecasts are above or 
below. So the spread between the 25% and 
the 75% indicates the uncertainty in the 
forecast, and the median indicates a middle 
value that may be useful to compare with 
the subsequent SCSI observation.  Note 
that the directional indication of the forecast 
is generally quite accurate, while the 
uncertainty varies from year to year. 
Knowing the uncertainty is useful since 
years in which the uncertainty in the 
forecast is low and there is a strong 
directional indication for SCSI may lead to 

different risk management actions than 
years in which the forecast has a strong 
directional change but is also marked by 
high uncertainty.  

To provide insight as to how this could 
be approached, we consider arbitrary 
thresholds of departures in SCSI as 
deviations from its long-term average, and 
use the forecast probability distribution for 
each year to assess the probability of a 
positive or negative departure of that 
magnitude. In reality a decision maker could 
prescribe their own action threshold, 
evaluate the production and hence 
monetary consequences of the forecast 
relative to the uncertainty and the threshold 
prescribed, as part of the decision process.  

 
 

Figure 5: Cross-Validated Performance of the model in predicting SCSI during 1998 – 2012 for Satara. 
The boxplots for each year represent the 25

th
, 50

th
 and 75

th
 percentiles, in the middle with the whiskers 

extending to the largest or smallest value generated in 1000 random trials. The triangle plotted each year 
is the observation for SCSI for that year, and the line connecting the medians represents the center of the 
forecast. Triangles represent observed SCSI in that year as percentage departures from the long term 
average. The three horizontal lines represent average deficit and ± 10% of the average SCSI 
representing above average deficit (or drought) and below average deficit (good rainfall).  

 
This probabilistic evaluation of model 

performance is illustrated in Table 1.  For 
each year we compute the number of 
forecasts (out of the 1000) that are greater 
than the long term average of SCSI to 
obtain the probability of being in drought. 
The years when the model forecasts a high 

probability (0.6) of a good rainfall year (low 
SCSI) and the actual rainfall is good 
corresponding to a low SCSI, values are 
highlighted in blue. Similarly years when the 
model forecasted a drought (high SCSI) 
with high probability and the actual 
observation was also a high SCSI values 
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are highlighted in orange. It is interesting to 
note that 8 of the 12 years when the 
departure in SCSI is greater than 10% in 
either direction, the indicated forecast 
probability is in the correct direction. If 
we increase the departure to 20% (40%) of 
the long term average this is still 7 out of 9 
(3 out of 4) years. Thus, it seems that 
extreme departures of SCSI may have 
some predictability. However, the odds in 
many of these years are not very far from 
50/50, which is what we expect by chance. 

If one considers acting only if the 
probability associated with this forecast 
of above or below average SCSI is at 
least 60%, then the forecast is in the 
right direction in 8 of 12 years. The two 
years that are misclassified have modest 
departures of the opposite sign.  Raising 
this to 66% leads to 5 of 5 years being 
properly classified. The forecasts 
consequently appear to be well calibrated. 
 

 
Table 1: Model forecasts issued as probability of occurrence or non-occurrence of SCSI for a year being 
above or below its long term values. The table also shows the actual observations as percentage 
departures from the long term average for evaluating the forecasts. 

 
 

Future Direction 
Our future work will be focused on 

developing an integrated regional climate-
weather forecast system covering 
precipitation, temperature, humidity, etc., 
over the year to benefit the farmers in the 
context of a specific decision time table for 
irrigation scheduling along with the pre-
season crop choices. These multi-scale risk 
attributes will include mutually dependent, 
spatially disaggregated statistics such as 
total rainfall, average temperature, growing 
degree days, relative humidity, total number 

of rainfall days/dry spell length, and 
cumulative water deficits that inform the 
potential irrigation water requirements for 
crops etc. Given that these attributes exhibit 
mutual dependence across space and time, 
we will explore common ocean-atmospheric 
conditions from the observations and the 
state of the art Global Circulation Models 
(GCMs) that can be utilized as the predictor 
variables for the forecasting system. 
Hierarchical Bayesian methods that can 
easily handle the high dimensionality of 
such problems will be used to develop the 

Year Probability of good rain Probability of drought Actual Observed SCSI Anamoly (%)

1998 0.76 0.24 -54

1999 0.56 0.44 -12

2000 0.45 0.55 -1

2001 0.45 0.56 12

2002 0.40 0.60 13

2003 0.63 0.37 35

2004 0.66 0.34 -21

2005 0.51 0.49 -53

2006 0.70 0.30 -48

2007 0.60 0.40 -22

2008 0.44 0.57 -7

2009 0.64 0.36 -30

2010 0.77 0.23 -56

2011 0.38 0.62 2

2012 0.33 0.67 23
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integrated forecast system. The developed 
multivariate forecasts will be adapted and 
disseminated as decision tools for the 
farmers. 
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